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We assume that the level spectra of quantum systems in the initial phase of transition from integrability to
chaos are approximated by superpositions of independent sequences. Each individual sequence is modeled by
a random matrix ensemble. We obtain analytical expressions for the level spacing distribution and level number
variance for such a system. These expressions are successfully applied to the analysis of the resonance

spectrum in a nearly integrable microwave billiard.
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Random matrix theory (RMT) provides a framework
for describing the statistical properties of spectra for quan-
tum systems whose classical counterpart is chaotic [1,2]. Tt
models the Hamiltonian of the system by an ensemble of
random matrices, subject to some general symmetry con-
straints. Time-reversal-invariant quantum system is repre-
sented by a Gaussian orthogonal ensemble (GOE) of random
matrices when the system has rotational symmetry and by a
Gaussian symplectic ensemble otherwise. Chaotic systems
without time-reversal symmetry are represented by the
Gaussian unitary ensemble (GUE). A complete discussion of
the level correlations even for these three canonical en-
sembles is a difficult task. Most of the interesting results are
obtained for the limit of large matrices. Analytical results
have long ago been obtained for the case of two-dimensional
matrices [3]. It yields simple analytical expressions for the
nearest-neighbor-spacing distribution (NNSD) renormalized
to make the mean spacing equal one. The spacing distribu-
tion for the GOE, p(s)=7s exp(-7s?), where s is the spacing
between adjacent energy levels rescaled to unit mean spacing
D, is known as Wigner’s surmise. Analogous expression
p(s):%s2 exp(—j;sz) is obtained for the GUE [3,4].

There are elaborate theoretical arguments by Berry and
Tabor [5] that classically integrable systems should have
Poissonian statistics. The Poisson distribution of the regular
spectra has been proved in some cases (see results by Sinai
[6] and Marklof [7], for instance). Still its mechanism is not
completely understood. It has also been confirmed by many
numerical studies although the deviations of the calculated
P(s) from exp(—s) are often statistically significant (see [8]
and references therein). The appearance of the Poisson dis-
tribution is now admitted as a universal phenomenon in ge-
neric integrable quantum systems.

A typical Hamiltonian system shows a phase space in
which regions of regular motion and chaotic dynamics coex-
ist. These systems are known as mixed systems. Their dy-
namical behavior is by no means universal, as is the case for
fully regular and fully chaotic systems [9—11]. The nature of
the mixed systems is more obscure in quantum than in clas-
sical mechanics. The assumptions that lead to the RMT de-
scription do not apply to mixed systems. While some ele-
ments of the Hamiltonian of a typical mixed system could be
described as randomly distributed, the others would be non-
random. Moreover, the matrix elements need not all have the
same distributions and may or may not be correlated. Thus,
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the RMT approach is a difficult route to follow. Comprehen-
sive semiclassical computations have been carried out for
Hamiltonian quantum systems, which on the classical level
have a mixed phase space dynamics (see, e.g., [12] and ref-
erences therein). Berry and Robnik [13] elaborated a NNSD
for mixed systems based on the assumption that semiclassi-
cally the eigenfunctions and associated Wigner distributions
are localized either in classically regular or chaotic regions in
phase space. Accordingly, the sequences of eigenvalues con-
nected with these regions are assumed to be statistically in-
dependent, and their mean spacing is determined by the in-
variant measure of the corresponding regions in phase space.
There have been several proposals for phenomenological
random matrix theories that interpolate between the Wigner-
Dyson RMT and banded random matrices with an almost
Poissonian spectral statistics [ 14]. Unfortunately, these works
do not lead to valid analytical results, which make them dif-
ficult to use in the analysis of experimental data. There are
other phenomenological approaches (see, €.g., [15] and ref-
erences therein), which use nonextensive statistical mechan-
ics, based on maximizing the Tsallis or Kaniadakis entropies,
as well as the recently proposed concept of superstatistics.
These approaches have the advantage of conserving base in-
variance of the Hamiltonian matrix. They provide a satisfac-
tory description near the end of transition from integrability
to chaos.

This Brief Report considers another phenomenological
approach, which has the spirit of the Kolmogorov-Arnold-
Moser (KAM) theorem, to the stochastic transition in quan-
tum systems. The phase space of the integrable system con-
sists of infinitely many tori corresponding to the conserved
symmetries of the system. In the semiclassical limit, energy
eigenstates are expected to be localized on individual tori.
Tori destruction corresponds to the mixing of the correspond-
ing quantum eigenstates. Symmetry breaking breaks some of
the invariant tori but only deforms others according to the
KAM theorem. Quantum symmetry breaking strongly mixes
a limited number of eigenstates but has a less influence on
the other ones. Thus, the spectrum is divided into indepen-
dent sequences of eigenvalues. States belonging to the same
sequence are strongly mixed. The sequence may be modeled
by a GOE if time-reversal invariance is preserved. The inter-
action between states belonging to different sequences grows
as symmetry breaking increases. This amounts to amalgam-
ating the initial sequences into a fewer number of indepen-
dent sequences with no more regular character. Conse-
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quently, as the number of the no-symmetry sequences
decreases, their fractional density increases accordingly. As
the state of chaos is reached, the whole spectrum consists of
a single (GOE) sequence.

Abul-Magd and Simbel [16] consider another class of
mixed systems, in which the degrees of freedom are divided
into two noninteracting groups, one having chaotic dynamics
and one regular. The Hamiltonian of such a system is given
as a sum of two terms so that each of the eigenvalues of the
total Hamiltonian is expressed as a superposition of two ei-
genvalues corresponding to the two Hamiltonian terms. The
spectrum is then given by a superposition of independent
chaotic subspectra. Each subspectrum corresponds to one (or
one set) of the quantum numbers of the regular component of
the Hamiltonian. This model is used in [17] to describe level
statistics of vibrational nuclei. An elaborated version of this
model [18] has been applied to study NNSD of a wide range
of nuclei [19].

We shall now consider the energy spectra of nearly inte-
grable systems that may be represented as a superposition of
independent sequences S; each having fractional level den-
sity f;, with i=1,...,m, and with 27 ,f;=1. In this case,
NNSD of the composite spectrum can be exactly expressed
in terms NNSD’s of the constituting sequences (see, e.g.,
Appendix A.2 of Mehta’s book [1]). The gap probability

function
E(s)zf ds’f ds"p(s") (1)

that gives the probability of finding no eigenvalues in seg-
ment of length s of the total spectrum, is expressed as a
product of the gap functions of the individual sequences

E(m,s) =[] E{f:s). (2)
i=1

We assume that all of S; obey the GOE statistics. Then
NNSD of each of the individual sequences distribution is
given by the Wigner surmise, then for all i

’/_
E{(x) = Egop(x) =Erfc(%’x>, (3)

where Erfc(x) is the complimentary error function. The
NNSD of the full spectrum can the be obtained by twice
differentiating the resulting gap function.

We shall restrict our consideration to the case when all
sequences have the same fractional level density so that f;
=f=1/m. The gap function of the composite spectrum is

then given by
Vo \ "
E(m,s) = [Erfc(—s)] . 4)
2m

Differentiating this function twice with respect to s, we
obtain
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plm,s) = {Erfe( )} o 14m

—s
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1 s /7_T
X [ (1 - —)e"”z/“”’z + —2Erf0<\—s)} . (9
m 2m 2m

It is easy to see that for a single sequence p(1 ,s)=’2—Ts exp
(—fsz) so that the Wigner surmise is recovered. On the other
hand, lim,, .., p(m,s)=e™* as required.

A weak point of the distribution in Eq. (5) is that it differs
from zero at s=0 because the symmetry-breaking interaction
lifts the degeneracies. The model thus fails in the domain of
small spacings as far as the NNSDs are concerned. The mag-
nitude of this domain depends on the ratio of the strength of
the symmetry-breaking interaction to the mean level spacing.
Therefore, it is expected to work well for nearly integrable
system.

In the case when the individual sequences are described
by a GUE, the gap function for each individual sequence is
given by

2
Egup(x) = e _ Erfc( /——x) ) (6)
N

In this case, the NNSD of the composite spectrum is given

by
1 s 2s m=2
p(m,s) =— {6_452/’"”2 - —Erfc( r) ]
m m m\ T

4s 2s 2
X {(m— l){—e_452/”m2+mErfc< ,—)}
ar m\r’fn’
2
32s e—4s2/11'm2 e—4s2/77m2 _ iEI‘fC 2S’_ .
m m m\e"’JT

)

The situation with the level number variance (LNV) 32 of
composite spectra is not as clear as in the case of NNSD.
Seligman and Verbaarschot [20] argued that 32 is a variance
and can therefore be expressed for a composite spectrum as a
sum of the corresponding quantities for its subspectra,

+

S2(m,L) = 2, SHfiL), (8)
i=1

where E,-z(x) is the LNV of the ith sequence. There, the LNV
of the composite spectrum composed of m independent se-
quences described by RMT is given by

32(m,L) = mS3yp(Lim), (9)

where S3,,(L) is the LNV calculated by RMT. Explicit ex-
pressions for Sgy(L) in the cases of GOE and GUE are
given in Mehta’s book.

We shall compare our predictions for the NNSD and the
LNV with the energy spectra of a Limacon billiard. This is a
closed billiard whose boundary is defined by the quadratic
conformal map of the unit circle z to w,
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FIG. 1. (Color online) Comparison between the NNSD for two
nearly integrable Limacon billiards with the same distribution for
m-independent GOE sequences.

w=z+\% |7 =1 (10)
The shape of the billiard is controlled by a single parameter
A. For 0=A<1/4, the Limagon billiard has a continuous
and convex boundary with a strictly positive curvature and a
collection of caustics near the boundary. At N=1/4, the
boundary has zero curvature at its point of intersection with
the negative real axis, which turns into a discontinuity for
A>1/4. The classical dynamics of this system and the cor-
responding quantum billiard have been extensively investi-
gated by Robnik ef al. [21]. They concluded that the dynam-
ics in the Limacgon billiard undergoes a smooth transition
from integrable motion at A=0 via a soft chaos KAM regime
for 0<A=1/4 to a strongly chaotic dynamics for A=1/2.
We assume that the quantum dynamics of the Limagon
billiard can approximately be described by the model present
here. The spherical billiard for which A=0 has two good
quantum numbers, namely, the energy and angular momen-
tum. As A increases, the spherical symmetry is gradually
destroyed. States corresponding to different angular-
momentum quantum numbers mix to different degrees de-
pending on the magnitude of the wave functions at large z.

The resonance spectra in microwave cavities with the
shape of billiards from the family of Limagon billiards have
been constructed for the values A=0.125,0.150,0.300 and
the first 1163, 1173, and 942 eigenvalues were measured,
respectively [22,23]. The billiard with A=0.300 has a chaotic
dynamics, and its resonance spectrum is well described by a
GOE [24], i.e., using Egs. (5) and (9) with m=1. We here
consider the N=0.125,0.150 billiards that exhibit mixed
regular-chaotic dynamics, which is predominantly regular.
We have performed a least-squares analysis of the NNSD
and LNV for these billiards using Egs. (5) and (9), respec-
tively, taking m as a real parameter. The best fit values are
m=3.21,2.62 for the billiards with A=0.125,0.150, respec-
tively. Figure 1 shows the result of comparison of the experi-
mental NNSD for these billiards with Eq. (5), while the re-
sult for the LNV is given in Fig. 2. We note, however, the
interpretation of m as the number of spectra that are being
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FIG. 2. (Color online) Comparison between the LNV for two
nearly integrable Limacon billiard with the same distribution for
m-independent GOE sequences.

superimposed suggests that it should be an integer. For this
reason, we show in the two figures the results of calculation
with 3 and 4 sequences for the A=0.125 billiard and 2 and 3
sequences for the A=0.150 one. The figures show that the
agreement with the fractional value of m is not so much
better than with the integer values of the parameter. In both
cases, the parameter m can be taken equal to 3 for both the
NNSD and LNV in spite of the fact that the NNSD is close
to a Poisson distribution while the LNV shows a large
amount of spectral rigidity. This unusual situation is in favor
of the validity of the present model. To demonstrate this we
show an analysis of the NNSD in Fig. 3 and of the LNV in
Fig. 4 using the Berry-Robnik model [13]. The best-fit value
of the parameter g that measures the fractional volume of the
regular part of the phase space is found for the NNSD to be
0.585. This is quite different from the value 0.156 that fits
the LNV. We note that the agreement between the prediction
of the Berry-Robnik model and the experimental LNV is
worse than the agreement with our model. Concerning the
NNSD, both models fail to describe the depletion in the
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FIG. 3. (Color online) Comparison between the NNSD for a
nearly integrable Limagon billiard (A=0.125) with the same distri-
bution calculated using the Berry-Robnik semiclassical method.
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FIG. 4. (Color online) Comparison between the LNV for a
nearly integrable Limagon billiard (A=0.125) with the same distri-
bution calculated using the Berry-Robnik semiclassical method.

number of events in the first bin. There is 100 spacings in
this bin so that the statistical error is 10%. Thus the depletion
is statistically significant. The disagreement reflects the par-
tial neglect of level repulsion in both model where the super-
imposed sequences are considered as independent.

The expression for NNSD of a spectrum composed of
independent sequences with nonequal fractional densities f;
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is more complicated. It has been shown in [16,18] that the
NNSD in this case essentially depends on a single parameter,
namely, (f)==",f7, which is the mean fractional level den-
sity for the superimposed sequences; the statistical weight of
each sequence is given again by its fractional density. For a
superposition of equal sequences, f;=(f)=1/m. Therefore,
Eq. (5) can approximately be used to describe a superposi-
tion of independent but not equal sequences by considering
m as a parameter, not necessarily taking integer values. The
noninteger parameter m will play the role of an effective
number of the constituting sequences m=1/(f). One can
adopt this interpretation of the parameter m if one sees that
the fit in Figs. 1 and 2 are deteriorated by taking m=3 instead
of 3.21 or 2.62,

To summarize, we consider a model for systems with
regular-chaotic dynamics in which the energy spectrum is
represented by an independent sequences of levels, each one
modeled by a Gaussian random ensemble. By varying the
effective number of sequences, the model interpolates be-
tween the Poissonian spectrum for the regular system where
the spectrum consists of infinite number of sequences and
that of a chaotic system whose spectrum consists of a single
sequence. We show that the model successfully describe both
the NNSD and LNV for a nearly integrable Limacon billiard
with the same value of the model parameter.

[1] M. L. Mehta, Random Matrices, 2nd ed. (Academic Press,
New York, 1991).
[2] T. Guhr, A. Miiller-Groeling, and H. A. Weidenmiiller, Phys.
Rep. 299, 189 (1998).
[3] C. E. Porter, Statistical Properties of Spectra: Fluctuations
(Academic Press, New York, 1965).
[4] K. Haake, Quantum Signatures of Chaos (Springer-Verlag,
Heidelberg, 1991).
[5] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 356,
375 (1977).
[6] Ya. G. Sinai, Physica A 165, 375 (1990).
[7] J. Marklof, Commun. Math. Phys. 199, 169 (1998).
[8] M. Robnik, Chaos, Solitons Fractals 5, 1195 (1995).
[9] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
[10] S. S. E. H. Elnashaie and S. S. Elshishini, Dynamical Model-
ing, Bifurcation, and Chaotic Behavior of Gas-Solid Catalytic
Reactions (Gordon and Breach, Amsterdam, 1996).
[11TL. A. Bunimovich and S. Venkatuyiri, Phys. Rep. 290, 81
(1997).
[12] M. Gutiérrez, M. Brack, K. Richter, and A. Sugita, J. Phys. A
40, 1525 (2007).
[13] M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984).
[14] N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960);
M. S. Hussein and M. P. Pato, Phys. Rev. Lett. 70, 1089
(1993); Phys. Rev. C 47, 2401 (1993); G. Casati, L. Molinari,
and F. Izrailev, Phys. Rev. Lett. 64, 1851 (1990); Y. V. Fyo-
dorov and A. D. Mirlin, ibid. 67,2405 (1991); A. D. Mirlin, Y.

V. Fyodorov, F. M. Dittes, J. Quezada, and T. H. Seligman,
Phys. Rev. E 54, 3221 (1996); V. E. Kravtsov and K. A. Mut-
talib, Phys. Rev. Lett. 79, 1913 (1997); F. Evers and A. D.
Mirlin, ibid. 84, 3690 (2000); A. D. Mirlin and F. Evers, Phys.
Rev. B 62, 7920 (2000).

[15] A. Y. Abul-Magd, arXiv:0902.2943, Eur. Phys. J. B (in press).

[16] A. Y. Abul-Magd and M. H. Simbel, Phys. Rev. E 54, 3293
(1996).

[17] A. Y. Abul-Magd and M. H. Simbel, Phys. Rev. C 54, 1675
(1996).

[18] A. Y. Abul-Magd, C. Dembowski, H. L. Harney, and M. H.
Simbel, Phys. Rev. E 65, 056221 (2002).

[19] A. Y. Abul-Magd, H. L. Harney, M. H. Simbel, and H. A.
Weidenmiiller, Phys. Lett. B 239, 679 (2004).

[20] T. H. Seligman and J. J. M. Verbaarschot, J. Phys. A 18, 2227
(1985).

[21] M. Robnik, J. Phys. A 16, 3971 (1983); T. Prosen and M.
Robnik, ibid. 27, 8059 (1994); B. Li and M. Robnik, ibid. 28,
2799 (1995).

[22] H. Rehfeld, H. Alt, H.-D. Grif, R. Hofferbert, H. Lengeler, and
A. Richter, Nonlinear Phenom. Complex Syst. (Dordrecht,
Neth.) 2, 44 (1999).

[23] C. Dembowski, H.-D. Grif, A. Heine, T. Hesse, H. Rehfeld,
and A. Richter, Phys. Rev. Lett. 86, 3284 (2001).

[24] A. Y. Abul-Magd, B. Dietz, T. Friedrich, and A. Richter, Phys.
Rev. E 77, 046202 (2008).

017201-4



